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A B S T R A C T

Ensuring end-use quality is essential for batch-produced parts, particularly for load-bearing components, where
defects can significantly compromise structural integrity. Traditionally, finite element analysis (FEA) has been
employed either in pre-process design or as a post-process troubleshooting tool. This paper introduces a novel,
in-process, simulation-in-the-loop FEA system for real-time validation of the structural quality of additively
manufactured components as they are being produced. We present a case study using a consumer-grade 3D
material extrusion printer to validate the proposed system. Defect information is segmented from the layer
image using a U-net architecture and fed into a finite element solver to predict the potential structural failure
of the specimen in real-time. The proposed vision-based damage detection system achieved a segmentation
accuracy of 92.79% on the test data, while the FEA model showed final errors of 4.92% and 3.36% in terms of
tensile strengths when compared to the measured specimens with and without impactful defects, respectively.
The real-time FEA validation process varies depending on the computer system and the complexity of detected
defects. Overall, the framework introduced in this work progresses the state-of-the-art towards ensuring real-
time validation and timely decision-making during printing. The proposed algorithm is effective for automatic
real-time product structural quality validation and decision-making, as demonstrated in three case studies.
Result show that for the three different test cases with different levels of defects, the model predicted the
failure strength of the specimen within 5%. The contributions of this paper are threefold: First, a simulation-
in-the-loop framework was developed for in-process real-time structural validation of additively manufactured
components. Second, advanced image segmentation was integrated for adaptive defect detection, enabling
precise localization of defects without prior training on each defect size. Third, a flexible decision-making
system was created to evaluate product quality using tailored structural metrics, allowing timely responses
to maintain integrity. Together, these innovations form a comprehensive real-time FEA validation system,
enhancing reliability in structural assessment for additive manufacturing.
1. Introduction

End-use product quality guarantee ensures that products meet spe-
ific quality standards, including undergoing thorough structural vali-
ation to secure integrity and performance [1]. This method is analo-
ous to a Digital-Twin. Assured product quality is crucial for products
equiring robust structural properties, such as in buildings [2], au-
omotive components [3], aerospace parts [4], and medical devices

incorporating adaptive technologies [5]. Products made by additive
manufacturing (AM) are known for their lightweight nature and struc-
tural integrity, making them widely used in aerospace applications [6]
nd biomedical devices [7].

∗ Correspondence to: 300 Main St., Columbia SC, 29208, United States.
E-mail address: austindowney@sc.edu (A.R.J. Downey).

AM is an iterative process inherently containing uncertainties. Com-
mon defects, such as voids, incomplete fusion, and inconsistent layer
adhesion in extrusion-based printing and thermal cracking, porosity
from incomplete melting, and residual stress accumulation in laser-
based printing, can significantly impact structural integrity [8], es-
pecially in critical applications like aerospace and automotive com-
ponents. Defects in load-bearing areas, for instance, can dramatically
impact structural quality, leading to potential failure under operational
conditions. Post-manufacturing structural validation addresses these
issues by subjecting products to comprehensive testing, simulation, and
analysis to ensure they withstand various loads, stresses, vibrations,
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 data mining, AI training, and similar technologies. 
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and environmental factors in their intended applications. However,
because post-manufacturing validation occurs after production, it is
often inefficient in terms of time and cost [9]. A more efficient solution
is in-process structural validation, which monitors and validates quality
as the product is being manufactured, offering early defect detection
that is particularly valuable for critical AM applications. For high-
stakes components, additional post-manufacturing checks may still be
necessary to ensure the highest reliability standards are met.

In-situ monitoring combined with feedback control systems has
een developed to improve AM part quality during the manufacturing
rocess [10]. Research has shown that utilizing neural network-based
eedback with thermal history integration [11], closed-loop control

through thermal sensor and controller integration [12], and the com-
ination of process parameter adjustments with deep learning [13] can

mitigate inconsistencies and defects, thereby enhancing laser powder
ed fusion (LPBF) part quality. However, these systems primarily

address thermal and surface quality, overlooking the entire structural
validation. While feedback controls mitigate surface-level and ther-
mal issues, they lack insights into overall structural integrity, leaving
uncertainty about whether the final product meets design standards,
specially in high-precision applications requiring consistent mechan-
cal properties. Without a comprehensive, layer-by-layer validation
pproach, these methods cannot fully ensure the printed part’s reliable
erformance.

Finite Element Analysis (FEA) is widely used to evaluate the struc-
ural behavior of products under various conditions, identifying po-
ential weaknesses, stress concentrations, and defect areas to optimize

performance and reduce the risk of structural failures [14]. Research
has applied FEA models to predict the impact of defects on structural
integrity [15], establish relationships between pore defects and stress
distribution validated against experimental data [16], and investigate
eformation behavior [17]. These FEA models have become essen-

tial for assessing post-manufacture structural quality, helping manu-
acturers identify stress concentrations and potential failure zones in

AM parts. Despite these advancements, conventional FEA models are
primarily static, designed for post-production analysis, limiting their
suitability for real-time validation. Without adaptability to real-time
changes, FEA cannot track defect accumulation and shifting stress pat-
terns throughout the AM process. Consequently, conventional FEA lacks
the dynamic capability needed to continuously assess and maintain
structural integrity as defects develop unpredictably layer by layer.

Integrating in-process monitoring with real-time validation for AM
is a promising approach to ensure product quality, enabling early defect
detection with cost efficiency [18]. When considered jointly, in-process

onitoring and real-time validation are key constituents of a digital
twin [19]. In brief, digital twins provide a conceptual framework for
monitoring and controlling a product’s life cycle through a simulated
representation of the physical system [20]. The framework presented
n this paper introduces a methodology for developing an FEA model
f the component during printing and using that model for online
ecision-making regarding the continuation of the print. This incipient
odel could also serve as the base digital twin of the component

hroughout its lifetime, enabling predictive maintenance, optimization
f operational parameters, and proactive responses to potential perfor-
ance degradation [21]. By addressing the structural evolution during
M, this framework bridges a critical gap in realizing the potential of
igital twins for in-situ applications.

Although the potential of digital twins has been widely hypothe-
ized and the necessity for physics-based digital twins articulated [22],

their practical implementation faces significant challenges. Developing
physics-based models that can operate in real-time remains formidable,
hindered by the complexity and computational demands of accurately
modeling physical phenomena. Data compression techniques such as
compressive sensing [23] or physics-informed machine learning [24]
ould potentially reduce these computational burdens, but real-world
doption is limited. Moreover, most published research on digital twins
2 
emphasizes data-driven implementations [25], focusing on fault de-
tection [26], material modeling [27], or dynamic process optimiza-
tion [28]. These data-driven approaches, however, are less effective
or forecasting, particularly when applied to structural components

that have not yet entered service. This paper directly addresses these
gaps by advancing a physics-informed, real-time simulation framework
tailored for additive manufacturing, integrating defect segmentation
and structural analysis into a cohesive system that lays the foundation
for future digital twin development.

Our previous work developed a real-time structural quality vali-
ation system based on a multi-dimensional, accumulation-threshold

decision-making model [29]. This system links defect information with
decision boundaries to assess defect impacts, allowing immediate de-
cisions based on structural integrity. While this approach achieved
high accuracy in real-time validation, it faces limitations. Convolutional
eural network (CNN) models generally require predefined defect char-

acteristics, restricting their adaptability when unexpected defect types
or variations arise, which is a common scenario in AM due to process
dynamics and varied defect profiles. Despite incorporating diverse
samples, issues persisted with setting accurate defect impact thresholds.

The present work presents a novel real-time product structural qual-
ity validation system, integrated within a versatile FEA simulation-in-
the-loop framework, designed to achieve real-time structural validation
during AM. Unlike traditional FEA applications in AM, which primarily
validate structural integrity post-production, our approach towards
enables real-time structural validation as each layer is printed. This in-
process validation provides immediate defect detection and response,
reducing the need for extensive post-production testing and rework.
The contributions of this study are threefold. First, the creation of a ver-
satile simulation-in-the-loop framework to enable real-time structural
validation across diverse additive manufacturing applications, as de-
scribed in Section 2.1. Second, the incorporation of an advanced image
egmentation model for adaptive defect detection, offering flexibility
hrough precise localization and characterization of defects, includ-

ing size variations within the same type, without requiring specific
training for each defect size, covered in Section 2.2. Third, the de-
velopment of a flexible decision-making system that evaluates product
quality using tailored structural metrics, such as stress, strain, bending,
compression, and energy absorption to support responsive, application-
specific decisions that enhance product reliability and reduce waste,
introduced in Section 2.3. Overall, this work demonstrates the novelty
of implementing in-process validation within the simulation-in-the-
loop framework, balancing the need for real-time quality assessment
with considerations of FEA accuracy and computation time. Given the
omplexity of additive manufacturing processes, with variables such

as printing pattern, layer thickness, and material properties affecting
utcomes, the proposed framework prioritizes efficient computation
hile maintaining sufficient accuracy for reliable structural validation.
upplementary data and code are provided via a public repository [30].

2. Simulation-in-the-loop framework

This section explains the framework for the simulation-in-the-loop
real-time FEA structural validation system.

2.1. Simulation-in-the-loop framework structure

Fig. 1 illustrates the simulation-in-the-loop framework for real-time
FEA-based product quality validation, a key contribution of this work.
This versatile framework enables continuous structural validation by
starting with an ideal, defect-free FEA model that is dynamically up-
dated as the component is printed layer by layer. Defect information
is extracted using in situ image-based monitoring, where any detected
defects immediately trigger an FEA simulation and are incorporated
into the model. Each layer’s structural integrity is assessed before

proceeding to the next layer, allowing the framework to adaptively
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Fig. 1. The framework of simulation-in-the-loop real-time FEA product structural quality validation system.
f
c

integrate defects as they arise and provide an accurate representation
of the part’s evolving structure. If the FEA simulation results indicate
compromised structural integrity, the system will automatically issue a
warning to an operator to cancel the printing. For defect-free prints,
direct assignment of intrinsic material properties, rather than recal-
culating averages to save significant computational time, especially
in large-scale simulations. Simulation results, including metrics such
as stress and strain, guide validation criteria, enabling responsive, in-
process decisions to optimize both accuracy and efficiency for additive
manufacturing applications.

2.2. Defect segmentation

Image segmentation is a foundational technique in computer vision,
designed to partition digital images into distinct regions, facilitating the
identification and isolation of key features, such as defects in manufac-
tured components. In AM, segmentation enables the precise detection of
defects, such as voids, cracks, and irregularities, in real-time, allowing
for immediate quality assessment of each printed layer. This capability
is crucial for structural integrity, as it supports a continuous monitoring
process that adapts to the dynamic nature of additive manufacturing.

The incorporation of advanced image segmentation techniques for
adaptive defect detection provides the flexibility needed for additive
manufacturing by enabling precise localization and characterization
of defects with varying sizes within the same type, without requiring
prior training for each specific size. Models like U-net, Mask R-CNN,
and DeepLab significantly enhance defect detection through flexible
segmentation. For instance, U-net’s symmetrical contracting and expan-
sive paths facilitate precise localization by capturing detailed spatial
information and refining defect boundaries. This flexibility allows the
model to segment defects across various scales and shapes, making
it especially useful for integrating defect data into real-time valida-
tion processes. By providing detailed defect information, segmenta-
tion supports continuous FEA updating, contributing to the accuracy
of the simulation-in-the-loop framework and ensuring that structural
assessments reflect actual manufacturing conditions.

2.3. Online finite element model updating

Online finite element model updating is essential for achieving real-
ime structural validation in AM. This process starts with a baseline
EA model, representing an ideal, defect-free component with material
roperties and boundary conditions optimized for the specific AM
rocess. As printing progresses layer by layer, real-time defect data

is incorporated through adaptive image segmentation, enabling the
framework to detect and classify defects with high accuracy. Identified
defects, such as geometric anomalies or material inconsistencies, are
3 
integrated dynamically into the FEA model, which adjusts geometry
(e.g., voids) and material properties (e.g., Young’s modulus) to re-
flect the impact of each defect on structural integrity. An element
re-meshing process in the FEA model ensures that it aligns with the
evolving structure of the component. This dynamic updating captures
real-world manufacturing conditions in near-real-time, enhancing the
model’s accuracy in structural analysis. By integrating updated de-
fect information, the framework adapts continuously, offering timely
insights into the structural health of the part under production.

2.4. Real-time structural validation and decision-making

Real-time structural validation is crucial to ensure that printed
components maintain integrity throughout the production process. The
validation system continuously monitors mechanical properties, such as
stress, strain, deflection, bending, and compression, to detect potential
structural weaknesses. By tracking key metrics like maximum princi-
pal stress or strain distribution, the framework identifies deviations
that could compromise product reliability. This real-time monitor-
ing enables prompt decision-making, allowing manufacturers to inter-
vene by pausing or canceling the printing process based on structural
performance.

The decision-making process is guided by predefined thresholds
or critical structural metrics. For example, if stress reduction ex-
eeds a specified threshold, indicating a high risk of structural failure,

the system can automatically alert the user to prevent production of
a defective component. This proactive approach reduces waste and
operational downtime by ensuring only structurally sound compo-
nents continue through production. The integration of real-time data
within the decision-making loop supports both automated responses
and operator insights, offering actionable feedback through a user-
friendly interface. This system not only improves quality control but
also optimizes the AM workflow, enhancing product reliability while
minimizing material consumption and operational disruptions.

3. Case study and result

To demonstrate the feasibility of the proposed simulation-in-the-
loop framework, a case study was conducted using a simple rectan-
gular specimen geometry with randomly distributed inherent printing
void defects manufactured by a material extrusion printer. This choice
allowed for controlled testing conditions, where the interactions be-
tween defect segmentation, FEA model updating, and decision-making
could be effectively analyzed without the additional computational
and analytical challenges introduced by complex, irregular shapes. The
straightforward rectangular geometry, along with inherent void defects,
provided a reliable baseline for validating core functionalities, such as
detecting layer-wise defects and accurately integrating them into the

FEA model, essential steps that are foundational regardless of geometry.
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Fig. 2. The experimental platform and designed specimen: (a) experimental platform for product structural quality validation; (b) the designed specimen dimension; and (c) a
good quality layer of the specimen and two layers with various defects on different positions.
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3.1. Specimen preparation and fabrication

A Creality Ender 5 3D printer with Polylactic Acid (PLA) filament,
s shown in Fig. 2(a), was utilized in this case study. The unique

characteristic of this printer is that the relative position between the
camera and the build plane of the specimen is fixed. This fixed distance
provides consistent images with an identical scale across layers. An
optical camera (JAICV-M4+ CL) with a resolution of 1368 × 1020 was
positioned above the extruder on the printer frame to capture printing
images. The G-code for the designed specimen was modified prior to
printing, and a LabVIEW code activated the camera to capture layer
images after each completion.

The designed specimen follows the American Society for Testing
Materials (ASTM) D5766 standard, aimed at generating data for fas-
tener holes or simulating flaws in material components [31]. The
ole allows for stress concentration and reduced net cross-section,

while the test method calculates ultimate strength based on the gross
cross-sectional area, disregarding the hole. Due to the printer’s size
constraints, all dimensions were scaled down to 0.56 of the original
size. Scaling down the geometry may influence tensile test reliability,
as stress concentration effects around the hole and stress distribution
profiles can differ from full-sized samples, potentially affecting failure
stress and strain values. However, the scaled design preserves the essen-
tial flaw and stress concentration features, allowing effective validation
of the framework’s ability, even with minor deviations from standard
specimen behavior. The printing process used standard white Hatchbox
1.75 mm PLA filament. The layer thickness was set to 0.3 mm with
a 0.8 mm nozzle, with an extrusion temperature of 210 ◦C, a bed
temperature of 70 ◦C, and a printing speed of 45 mm/s. The specimen’s
dimensions are illustrated in Fig. 2(b), showing 100% infill density
across ten layers. The top and bottom layers were printed vertically,

hile the middle layers were printed horizontally, as shown in Fig. 2(c).
efects were introduced by modifying the G-code to temporarily stop
xtrusion at specific positions during certain layers, allowing for con-
rolled void formation to assess the impact on structural integrity. The
rtificially introduced defects, such as seeded voids, mimic common
eal-world defects in FFF, including material inconsistencies, extru-
ion interruptions, and flow fluctuations. This approach allows for
ystematic analysis of their impact on structural integrity, ensuring the
roposed procedure is relevant and applicable to real manufacturing
cenarios with complex geometries. Note that even with 100% infill
uring slicing, the FFF process inherently creates small voids between

the struts in the horizontal direction, contributing to a baseline level
of porosity. This inherent porosity is accounted for in the mechanical
property analysis, as discussed in Section 3.3. Fig. 2(c) shows both
nherent and seeded defects on the printed specimen.
 j

4 
3.2. Failure mechanism validation

Tensile tests were conducted on collected specimens to obtain ma-
erial properties for simulation. Ten good-quality samples and ten with
mpactful defects were tested to determine the average tensile force.

The impactful defects were 5 mm seeded faults placed in the same
osition around the hole on three consecutive layers, as shown in

Fig. 2(c). Mechanical validation was performed using an MTS Exceed
E43 electromechanical load frame with a 50 kN capacity (Fig. 3(a)).
Each specimen was mounted vertically, gripped at 15 mm at each end,
and loaded at 9 mm/s, leading to fracture in approximately 3 s. Data
on force, displacement, and time were collected at 10 Hz to compute
stress and strain.

Fig. 3(b) displays the averaged tensile forces of specimens with and
without defects. As summarized in Table 1, the average maximum force
nd displacement for defect-free samples were 2083 N and 2.74 mm,

while defective samples averaged 1684 N and 2.17 mm. Correspond-
ingly, the average strain before fracture was 19,600 and 15,528 με, and
the maximum stress was 49.59 and 40.10 MPa, respectively. These re-
sults demonstrate that impactful defects significantly reduce structural
quality, resulting in lower stress tolerance. The tensile test results for
all 20 samples are provided in Table 6 within Appendix A.

Digital image correlation (DIC) is used to validate tensile test values,
as shown in Fig. 3(a). The experiment is conducted on the same
machine with identical configurations as previously described. Ten
specimens, both with and without impactful samples, are speckled
following the standard process described by Correlated Solutions [32],
as depicted in Fig. 4(b). Speckled samples are allowed to dry completely
before mounting on the machine. The camera captures four images
per second, sufficient for analysis. To ensure consistency, the DIC
analysis was conducted on multiple samples, and it was observed that
all samples, despite variations in the speckle pattern, produced similar
DIC results. For this analysis, a subset size of 45 pixels and a step size
of 7 pixels were selected, yielding a spatial resolution that effectively
captures the primary deformation characteristics within the field of
view. These subset and step sizes were chosen to minimize noise in the
strain data while preserving critical information on strain distribution
across the samples. No additional smoothing was applied during strain
computation. For brevity, only two results are reported here; a sample
without impactful defects in Fig. 5 and a sample with impactful defects
in Fig. 6.

Fig. 5(a)–(j) presents a series of contour maps illustrating the strain
distribution in the sample without impactful defects under progressive
tensile loading, starting from one second of loading (Fig. 5(a)) to
ust before fracture (Fig. 5(j)). In Fig. 5(b), the specimen is uniformly
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Fig. 3. Printed specimen tensile test: (a) setup; (b) the specimen tensile force results.
Fig. 4. Digital image correlation specimens: (a) a sample speckle specimen; (b) fractured sample without impactful defect; and (c) fractured sample with an impactful defect.
Fig. 5. Strain distribution progression in a sample without impactful defects, subjected to tensile loading from the initial state before loading to after fracture with average axial
strain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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colored, indicating no or minimal strain. Non-uniformity becomes ap-
parent in Fig. 5(d), with localized regions experiencing higher strain,
signifying the onset of material deformation. A clear hotspot of strain
is visible in Fig. 5(f), indicating a significant deformation concentration
around the center hole. Fig. 5(h) represents the pre-fracture state,

ith highly localized strain around the center hole, leading to failure.
In Fig. 5(i), the strain is at its maximum concentration, suggesting
material yielding around a critical center hole just before fracture, with
an average strain of 20 500 με. The fractured sample without impactful
defects is shown in Fig. 4(c).

Fig. 6(a)-(j) depicts the progression of strain distribution in the
impactful sample, featuring a center hole and an internal defect, under
tensile loading. The sequence spans from the initial state (Fig. 6(a))
to just before fracture (Fig. 6(j)). Slight strain accumulation is visible
around the hole and the defect in Fig. 6(b), indicating stress concentra-
tion due to the geometric discontinuities. Stress concentration becomes
more pronounced in Fig. 6(d), suggesting these features influence the
 a

5 
failure mode. Fig. 6(h) shows a clear pattern of high strain around
the hole and the defect, possibly indicating material damage or micro-
cracking. The highest strain is localized at the hole and the defect area
as both act as stress concentrators, with the color gradient showing a
sharp transition from high to low strain around these areas, indicative
of a critical stress state just before the material fractures (Fig. 6(j)).
The results indicate that the defect significantly influences the failure,
with an average strain before failure of 16 600 με, much lower than
observed in a sample without impactful defects. The fractured sample

ith impactful defects is displayed in Fig. 4(d), which shows the failure
across the impactful defect position.

The tensile and DIC tests are summarized in Table 1. To derive stress
istribution from DIC strain data, a linear elastic stress–strain relation-
hip was applied. This approach enables accurate stress estimation from
train using Young’s modulus, yielding reliable stress distribution maps,
ven with minor localized deviations around defects. Both the tensile

nd DIC tests confirm that impactful defects significantly affect product
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Fig. 6. Strain distribution progression in the sample with an internal defect, subjected to tensile loading from the initial state before loading to after fracture with average axial
strain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
ensile and DIC test results with stress and strain difference.
Specimen Test type Number of

samples
Averaged
strain (με)

Strain standard
deviation

Strain
difference (με)

Averaged
stress (MPa)

Stress standard
deviation

Stress difference
(MPa)

Without impactful defect Tensile test 10 19 600 80.10 – 49.59 0.24 –
Without impactful defect DIC test 10 20 500 86.32 900 50.61 0.28 1.02
With impactful defect Tensile test 10 15 528 91.45 – 40.10 0.37 –
With impactful defect DIC test 10 16 600 102.96 1072 41.43 0.43 1.33
Table 2
Material property from tensile stress–strain for FEA.

Property Density (g/mm3) Young’s modulus (MPa) Poisson’s ratio Strain at UTS (με) Ultimate Tensile Strength (UTS) (MPa)

Value 1.36 3000 0.36 19 600 49.59
p
r
a
A

properties, with average strains of 19,600 and 15,528 με for good-
uality specimens and those with impactful defects, respectively, as
easured in the tensile test. DIC results show material yielding around

a critical center hole, with strains averaging 20,500 με for good-quality
specimens and significantly lower at 16,600 με for specimens with
harmful defects. The material properties in Table 2 were determined
sing a combination of experimental data and literature references.

Young’s modulus was calculated from tensile stress–strain data by
applying a linear least-squares regression to the initial, linear portion of
the curve, capturing the material’s elastic response. Poisson’s ratio was
obtained from established PLA literature values, which are consistently
reported as the same [33–35]. The density was measured by calculating
he mass-to-volume ratio based on the specimen’s dimensions and

weight, ensuring alignment with typical PLA properties. Comparing
strain values across tests validates the material properties derived from
the tensile test (Table 2) for further simulation. In this study, defects
are classified as impactful if they reduce maximum tensile stress by
more than 8% (3.97 MPa) compared to defect-free samples [36,37].
This threshold aligns with ensuring product’s damage tolerance prin-
iples [38,39]. This balanced approach ensures that only defects with
 meaningful impact on performance are flagged, while minor defects
re disregarded for efficiency.

To ensure the accuracy of the FEA model, a validation process was
conducted using strain maps obtained from DIC, allowing for a detailed
comparison with FEA results. Root Mean Square Error (RMSE) quan-
tified the differences between FEA and DIC strain maps, focusing on
the axial strain component, which corresponds to the primary loading
direction in the tensile test to balance accuracy and model simplicity.
This validation used experimental strain data from specimens both with
and without defects, enabling a comprehensive calibration of the FEA
model to capture structural responses accurately in the presence of
defects.
6 
Based on initial comparisons, adjustments were made to FEA model
parameters, such as mesh density and material properties, until the
FEA results closely matched the experimental strain maps. While this
process confirmed the model’s accuracy for the specific rectangular
geometry used in this study, additional tuning may be required for
different geometries, as structural responses can vary significantly de-
pending on shape and defect placement. This iterative process validated
the FEA model’s reliability in predicting the PLA specimen’s mechanical
behavior, making it suitable for assessing structural integrity and failure
modes under the tested conditions.

3.3. Defect segmentation with U-net

The image segmentation algorithm used in this research is U-
net [40], a well-studied and widely adopted model in image segmen-
tation tasks [41]. The segmentation process is depicted in Fig. 7. The
U-net architecture is composed of a contracting path and an expansive
ath. In the contracting path, two 3 × 3 convolutions (unpadded) are
epeatedly applied, each followed by a rectified linear unit (ReLU)
nd a 2 × 2 max pooling operation with stride 2 for downsampling.
t each downsampling step, the number of feature channels doubles.

In the expansive path, the feature map is upsampled, followed by a
2 × 2 ‘‘up-convolution’’ that halves the number of feature channels. The
corresponding cropped feature map from the contracting path is then
concatenated with two 3 × 3 convolutions, each followed by a ReLU.
Cropping is necessary to compensate for the loss of border pixels in
each convolution. At the final layer, a 1 × 1 convolution maps each 64-
component feature vector to the desired number of classes. Overall, the
U-net architecture has 23 convolutional layers, enabling robust defect
detection, which informs the FEA model updating step. The U-net archi-
tecture employed follows a classic configuration, chosen for its balance
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Fig. 7. The defect segmentation process with U-net.
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between model complexity and performance. This setup ensures reli-
ble segmentation, crucial for accurate defect detection in real-time

applications. Variations in settings, such as kernel size or number of
ayers, could affect the performance; larger kernels or deeper networks
ight capture more complex features but increase computational de-
ands, while simpler configurations might compromise accuracy. This

lassic configuration strikes an effective balance, offering robust defect
etection with manageable computational requirements.

To increase the size of the training dataset, data augmentation
(i.e., flip, random rotation, Gaussian blur, and Gaussian noise) is im-
plemented. After data augmentation, the final dataset contains 1000
images, covering four types: seeded voids (3–8 mm), long voids (large
han 10 mm), short voids (less than 2 mm), and good quality layers.

For the labeled specimen images and masks, 80% of them are randomly
chosen as training data, and the remaining 20% are used as test data.
The raw image dimension of the specimen is 1368 × 1020 pixels.
To accelerate the training speed, the image resolution is reduced by
resizing to 512 × 512 pixels before input into the model. Training is
done over 100 epochs.

The ground truth for defect segmentation was determined by man-
ually labeling five categories: background, sample, seeded void, long
void, and short void. Given the challenge of consistently identifying
ubtle defects like short voids and long voids, multiple team mem-

bers independently labeled the data, resolving discrepancies through
consensus to reduce subjectivity.

The U-net-based defect segmentation process updates the FEA model
layer-by-layer in two distinct ways: (1) larger defects, referring to
eeded, regular-shaped voids (e.g., rectangular defects), are incorpo-
ated as geometric model changes, and (2) smaller defects, representing

inherent, irregular-shaped voids (e.g., long and short voids formed
during the printing process), are handled through adjustments to the
layer’s Young’s modulus. Note that while long voids may appear ex-
tensive in length, they are classified as ‘‘smaller’’ due to their irregular
shape and distribution, which makes direct geometric updates in the
EA model computationally impractical. The center hole replicates a

fastener hole or simulates a large material flaw in a component. Based
on research by Choren et al. [42], the equation for Young’s modulus of
a porous body is:
𝐸p = 𝐸0(1 − 𝑎𝑃 ) (1)

where 𝐸p is Young’s modulus of the porous body, 𝐸0 is the modulus of
a non-porous body of the same material, 𝑎 is a constant dependent on
Poisson’s ratio of the matrix material, and 𝑃 is the volume porosity. To
simplify the calculation and simulation process, the constant dependent
𝑎 is equal to 1, which means Young’s modulus negatively correlates
with the volume porosity. The equation for Young’s modulus of a
porous body aims to enhance simulation accuracy by accounting for
minor printing defects. However, it has limitations: (1) assumes a linear
 f
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relationship between Young’s modulus (𝐸p) and porosity (𝑃 ), which
may not accurately capture the behavior of materials with high porosity
r varying pore structures; (2) sets a constant 𝑎 dependent on the

Poisson’s ratio of the matrix material, which may vary with different
materials and porosity configurations, affecting the accuracy of the
calculated Young’s modulus; and (3) is valid only for moderate porosity
levels and may not suit highly porous materials where structural in-
tegrity is significantly compromised. Note that these limitations impact
the model’s accuracy, particularly for materials with high porosity or
varying pore structures, resulting in less reliable predictions under such
conditions. Young’s modulus for the upcoming layers is derived by
calculating the modulus for each previously printed layer using Eq. (1),

here 𝑃 represents the porosity of each layer, and then averaging these
values to ensure accurate mechanical property representation.

3.4. FEA model updating and structural validation

In this work, the FEA is simulated using an explicit scheme in
ension with a fixed loading displacement. One end of the specimen
s constrained in all six degrees of freedom, while the other end is
onstrained in five degrees, with a displacement rate of 10 mm/s
pplied along the longitudinal axis. Material properties are assumed
o be homogeneous and isotropic for each layer, balancing computa-
ional simplicity with accuracy. This isotropic model facilitates reduced
omputational complexity and is suitable for real-time applications,
hough it does not capture FFF’s directional anisotropy due to print-
ng direction [43,44]. Tensile test results confirmed minimal plastic

deformation, indicating brittle behavior in PLA. The Python API within
Abaqus is leveraged for FEA model updating [45].

The brittle material model follows ASTM D5766 standards for eval-
ating structural integrity under stress concentrations, using the max-
mum principal stress criterion to simulate failure by element removal
pon reaching critical stress levels. This approach is particularly suited
or capturing failure initiation and progression in brittle materials like
LA, where localized stress concentrations play a significant role [46–

48]. The details are presented in Appendix B.
The simulation employed a global mesh size of 1 mm to maintain

omputational efficiency, with a 4-node linear tetrahedral (C3D4) ele-
ent shape. Tetrahedral elements were selected for their stability and

rror-free meshing capabilities when introducing defects via the Abaqus
ython script. Although alternatives like hexahedral elements offer
aster convergence, they introduced instability in defected geometries,
aking tetrahedrons the most practical choice. While local mesh re-

inement could provide more detail around intricate defect geometries,
t would considerably increase computation time, potentially compro-
ising real-time validation goals. To ensure accurate structural quality

ssessment, the specimen’s gauge region was treated as a separate set

or extracting maximum principal stress values.
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Table 3
System configurations for the real-time computational time calculation.

Hardware System 1 System 2 System 3
Processor Intel core i7-3770 AMD Ryzen Threadripper 3970X Intel Xeon Gold 6250
Number of processor 1 1 2
Total core count 4 cores, 8 threads 32 cores, 64 threads 16 cores, 32 threads
Base clock speed 3.4 GHz 3.7 GHz 3.9 GHz
RAM 8 GB 128 GB 96 GB
Operating system Windows 10, 64 Bit Windows 10, 64 Bit Windows 10, 64 Bit
Fig. 8. The diagram of the computational time calculation for real-time automatic product structural quality validation.
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3.5. Real-time computation and decision-making

Fig. 8 illustrates the computational cycle as a diagram for real-
time product structural quality validation. Real-time refers to com-
uting or other operations within a specified time range, typically

very short. Real-time FEA solvers need to be completed within de-
fined time steps [49]. This investigation focuses on total cycle time,
ncompassing defect segmentation, model update, FEA simulation, and

decision-making. Three personal desktops with varying system config-
urations are utilized to measure structural validation computational
ime, the desktop hardware specifications are detailed in Table 3.

3.6. Case study result

Fig. 9 illustrates the online product structural quality validation
nd decision-making process in a real case study: a specimen with a

3 mm seeded defect on layer two, 3 mm and 5 mm seeded defects
on layer four, and short and long voids on each layer. The sizes and
positions of these defects were chosen to simulate realistic failure
scenarios, with defect sizes reflecting dimensions that could impact
tructural integrity and positions selected in high-stress areas, such as

near load-bearing paths [17,36]. FEA structural validation is skipped
for the initial layers without defects. Upon the appearance of a 3 mm
seeded defect on layer two, the image segmentation model updates the
defect sketch and Young’s modulus in the FEA model, triggering the
FEA simulation. However, as the maximum principal stress does not
exceed the threshold, indicating negligible impact, printing continues
to layer three, which contains only short and long voids. On layer
four, with two seeded defects (3 mm and 5 mm) and voids, all defect
information from previous layers accumulates to update the FEA model.
The resulting maximum principal stress surpasses the stress threshold,
indicating that accumulated defects compromise structural integrity,
leading to automatic print cancellation.

3.6.1. Defect segmentation results
The accuracy of data-driven defect segmentation using U-net is

crucial, as it determines the success of subsequent steps like struc-
tural quality validation and decision-making. To evaluate the image
segmentation accuracy, Intersection-Over-Union (IoU) is utilized as the
evaluation metric [50]. The IoU is calculated by dividing the area
of overlap between the predicted segmentation and the ground truth
by the area of union between the predicted segmentation and the
ground truth. The metric ranges from 0%–100%, with 0% indicating
no overlap and 100% meaning perfectly overlapping segmentation. The
ultimate IoU for training data achieves 95.32%. The algorithm also per-
forms well on test data, with a 92.79% IoU accuracy, reflecting strong
performance. However, this accuracy is influenced by the challenges
8 
Table 4
ariation in void/gap volume and Young’s modulus for layers.
Layer Void volume (%) Young’s modulus (%

of solid material)

Layer 2 1.35 98.65
Layer 3 1.16 98.84
Layer 4 1.42 98.58
Following layers 1.31 98.69

of manual ground truth labeling, particularly for small porosity and
ong voids, where some defects may have been missed. Improving the

labeling process and enhancing the model with advanced techniques
could further boost accuracy. Despite this, the current rate effectively
supports real-time structural validation and decision-making in additive
manufacturing. The segmentation results for good layer and layer with
defects are shown in Fig. 10.

3.6.2. FEA model updating and structural validation results
In Fig. 11, defects and their polygonal representations are shown,

erived from the defect segmentation results. The defect polygons
are sketched by connecting key points sequentially. Fig. 11(a) and
(b) display the updated defect outlines on layers two and four, with
ketches illustrating defect localization. Void percentages and corre-

sponding Young’s modulus adjustments for layers two, three, and four
are summarized in Table 4. Based on Young’s modulus adjustments
from the porous body description [51], these values are calculated to
reflect defect influence accurately. Given the minimal defect presence
in the bottom layers, no modulus adjustment is necessary, ensuring
stable structural support for subsequent layers.

Fig. 12 displays the FEA simulation result for the specimens with
and without defects. From Fig. 12(a), the maximum principal stress for
the specimen without impactful defects after fracture is 47.15 MPa.
As shown in Fig. 12(b), the specimen with the seeded defect in an
ignorable position (the defect in Fig. 11(a)), the maximum principal
stress is 47.09 MPa. The specimen with a seeded defect near the
fastener hole has a 45.22 MPa maximum principal stress (accumulates
all the defects in Fig. 11(a) and (b)), which is shown in Fig. 12(c). The
ensile test stress for the good-quality specimen, the specimen with a

3 mm defect on layer two, and the specimen with a 3 mm defect on
layer two and 3 mm, 5 mm defects on layer four are 49.59, 49.32, and
46.79 MPa.

Table 5 reports the tensile test and FEA simulation results for
the three validation cases, verifying the proposed algorithm’s effec-
tiveness for automatic real-time product structural quality validation
and decision-making. The results indicate that for the three different
test cases, each with varying levels of defects, the model predicted
the failure strength of the specimen within 5%. Despite minor gaps
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Fig. 9. The process of real-time automatic FEA structural quality validation on the fourth layer.
Fig. 10. The randomly selected U-net segmentation results: (a) the segmentation result for a good layer and (b) the segmentation result for the layer with defects.
Fig. 11. The defect updating results on specific layers: (a) a 3 mm seeded defect with a sketch on layer two and (b) the seeded 3 and 5 mm defects sketch updating result on
layer four.
between the real experiment and the simulation results, the overall
results remain consistent across different levels of damage. However,
in the third case, a discrepancy arises where the actual tensile test
stress exceeded the threshold, while the FEA simulation predicted a
lower stress, triggering the system’s print cancellation. This discrepancy
highlights the limitations of the FEA in capturing all real-world factors
and reflects the conservative cancellation threshold of 45.62 MPa,
9 
designed to ensure safety. Fig. 13 displays a screenshot of the warn-
ing/print cancellation window during the real-time FEA validation and
decision-making process.

3.6.3. Real-time computation and decision-making results
The computational time for each step in real-time structural val-

idation, tested with system 2 from Table 3, is shown in Fig. 14. A
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Fig. 12. The FEA simulation result: (a) without defects, (b) with a 3 mm defect on layer two, and (c) with a 3 mm defect on layer two along with 3 and 5 mm defects on layer
four.
Fig. 13. Print cancellation alert initiated by real-time structural quality validation framework.
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Table 5
ensile test and FEA simulation results for the tested specimens.

No detectable
defects

With ignorable
defect (3 mm)

With ignorable (3 mm)
and impactful defect
(5 mm)

Tensile test stress
(MPa)

49.59 49.32 46.79

FEA maximum
principal stress
(MPa)

47.15 47.09 45.22

Stress difference
(MPa)

2.44 2.23 1.57

Percent difference 4.92% 4.52% 3.36%

layer with two defects (258 defect pixels) was selected for analysis,
s depicted in Fig. 11(b). The results in Fig. 14(a) show that model

updating for 3 mm and 5 mm defects takes 7.4 s, with FEA structural
validation consuming the most time at 129 s. Decision-making, which
involves traversing all frames to determine the maximum principal
stress, takes 4.4 s. The total computation time is 141.2 s. Fifteen
samples with varying defect sizes and numbers were examined, as
shown in Fig. 14(b). The computational time for image segmentation
remains constant at 0.4 s, while the time required for FEA model
updates and structural validation depends on defect characteristics.
Notably, computational time increases with both the size and number
10 
of defects, as larger and more numerous defects demand more time for
efect sketch updates and FEA simulations.

Fifteen samples with varying defect sizes and numbers were ex-
amined, as shown in Fig. 14(b). The computational time for image
egmentation remains constant at 0.4 s, while the time required for
EA model updates and structural validation depends on defect char-

acteristics. Notably, computational time increases with both the size
and number of defects, as larger and more numerous defects demand
more time for defect sketch updates and FEA simulations. A deeper
analysis indicates that cases with fewer large defects (e.g., a single
defect with 591 pixels) can exhibit similar computational times to cases
with multiple smaller defects (e.g., five defects totaling 387 pixels).
This observation suggests that both the cumulative defect area and
the number of individual defect zones independently contribute to
computational demand. Thus, while each defect increases processing
load, the complexity and spread of defect areas also play a critical role
in determining computational efficiency.

Fig. 15 reports achievable and unachievable real-time combinations
of FEA models considering the number of defects in the model as
well as the total defect area measured in pixels. The performance
space is plotted individually for the three computer systems reported in
Table 3. This figure explores a computer system configuration’s impact
on computational time. As one layer printing time requires 140 s, real-
time structural validation is unachievable if the defect’s computational
time exceeds this constraint. Therefore, the threshold for achievable
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Fig. 14. The computational time for each step in real-time product structural quality validation: (a) the computational time for each step and (b) the computational time for FEA
validation with various defect sizes.
Fig. 15. The decision boundary of the achievable and unachievable real-time structural validation defect for different computer system configurations in Table 3: (a) the decision
boundary for computer system 1, (b) the decision boundary for computer system 2, and (c) the decision boundary for computer system 3.
O
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and unachievable defects is set at 140 s for this study. Logistic re-
gression was used to plot the decision boundaries for achievable and
unachievable defects to ensure the proposed algorithm meets real-time
product structural quality validation timing constraints, as shown in
Fig. 15. In Fig. 15(a), all defects surpass the real-time limitation, with
the minimum defect computational time being 459 s. From Fig. 15(b)
nd (c), it is evident that a more powerful computer can accelerate the

entire process. It is noteworthy that the minimal detectable defect size
is 12 pixels (0.37 mm); defects smaller than that are undetectable or
generally considered insignificant.

4. Conclusions

This paper presents a novel finite element analysis (FEA) simulation-
n-the-loop framework for real-time structural validation of additively
anufactured components. Defect data is extracted via a U-net image

egmentation algorithm and integrated into a pre-generated model,
nabling geometry and material adjustments to reflect actual printing

defects. The FEA model operates in parallel with the layer-by-layer
printing process, performing continuous structural assessments by com-
paring the maximum principal stress against a threshold to validate
product quality. In a verification case study, an integrated optical
camera captured in situ images for U-net training, allowing auto-

matic quality validation upon detecting defect layers. Based on these

11 
results, the system determines whether to proceed with or terminate
the manufacturing process.

Results indicate that the U-net model achieves high Intersection-
ver-Union (IoU) accuracy on both training and validation datasets,

with defect segmentation accuracies of 95.32% and 92.79%, respec-
tively. Validation cases further confirmed the model’s reliability, with
the FEA predictions of failure strength aligning within 5% of ex-
perimental results across three different defect levels. This method
represents a significant advancement in real-time defect detection and
structural validation, iteratively ensuring product integrity throughout
the printing process.

Our in-process FEA approach represents a pioneering step towards
‘‘Smart Manufacturing’’ in additive processes, moving beyond static,
post-production analyses to a responsive, adaptive system. This tran-
sition is essential for advancing additive manufacturing to meet the
emands of precision-engineered, load-bearing components, reinforc-

ing the capability of additive manufacturing to reliably produce high-
performance parts in critical applications.

5. Limitations and future work

This section discusses the limitation of the proposed simulation-in-
the-loop additive manufacturing real-time structural validation frame-
work and proposes future work in detail.



Y. Fu et al.

V

t
A

U

I
o

Additive Manufacturing 98 (2025) 104631 
5.1. Limitations

• Computational Efficiency vs. Accuracy
A primary limitation of this study is the challenge of balanc-
ing computational efficiency with the accuracy required in FEA
simulations, which are sensitive to defect conditions, mesh size,
boundary conditions, and material properties. While finer meshes
improve accuracy, they significantly increase computational de-
mand, making real-time validation challenging for complex ge-
ometries or large areas. This trade-off is especially critical for
larger-scale industrial applications where both accuracy and real-
time feasibility are essential.

• Defect Segmentation Accuracy
The U-net-based segmentation model effectively detects a range of
defect types but may struggle with very small or subtle defects re-
quiring highly accurate, manually labeled ground truth. Further-
more, the current approach is limited to surface-level defects and
overlooks subsurface or internal defects within layers, which can
impact FEA predictions. Complementary detection technologies,
such as thermal [52] or acoustic monitoring [53,54], could help
address these limitations and ensure comprehensive validation.

• Limited Scope and Scalability Challenges
The research is constrained to a single case study with one specific
process, material, and geometry, limiting its generalizability to
other AM technologies, materials, and processes. Additionally,
the time required for real-time defect detection and FEA updates
can vary significantly with geometry complexity, process type,
and printing conditions. For instance, thermal-induced defects in
Selective Laser Melting (SLM) may require incorporating thermal
properties into the FEA model [55], while intricate geometries or
high-speed processes like Electron Beam Melting (EBM) demand
quicker detection and updates, affecting scalability across diverse
setups. Addressing these challenges is critical for broadening the
framework’s applicability and feasibility.

• Lack of Adaptive Control
While the system detects defects in real-time, it lacks mecha-
nisms to dynamically adjust printing parameters in response to
detected defects [56]. This limits its ability to proactively address
quality issues during printing, which is particularly critical where
real-time responses could prevent defect propagation.

5.2. Future work

• Improving Computational Efficiency and Accuracy
Future work will focus on achieving an optimal feature-to-mesh
size ratio around defects to enhance stress distribution accuracy
without excessive computational costs. Additionally, comparing
DIC analysis with the predicted FEA strains would be helpful
in assessing prediction accuracy and identifying potential errors.
Adaptive meshing techniques, which dynamically adjust mesh
density based on defect complexity, offer a promising solution
for improving real-time feasibility [57,58], particularly for large
layer areas and intricate geometries.

• Enhancing Defect Detection
Advancements in image segmentation models will aim to improve
the detection of subtle or small defects. Complementary technolo-
gies such as thermal and acoustic monitoring could provide a
more comprehensive view of structural integrity, addressing the
current limitation of detecting only surface defects. Additionally,
numerical quantification methods based on optical analysis may
enable simpler defect evaluations using metrics like pixel-based
measurements.

• Expanding Case Studies
Testing the framework across a broader range of geometries,
materials, and AM technologies—including Selective Laser Sin-
tering (SLS), SLM, and EBM will validate its applicability [59].
12 
Material- and process-specific adaptations, such as integrating
thermal properties for SLM applications, will also be explored.
Enhancements to maintain real-time feasibility in high-speed pro-
cesses like SLM and EBM will be prioritized.

• Integrating Adaptive Control Mechanisms
Incorporating dynamic adjustments to printing parameters (e.g.,
temperature, speed, or material flow) in response to detected
defects could prevent defect propagation and enhance overall
part quality. This integration aligns with Smart Manufacturing
initiatives, optimizing efficiency and product reliability.

• Exploring PINNs for Real-Time Validation
Physics-Informed Neural Networks (PINNs) will be investigated as
an alternative to traditional FEA for real-time validation [60,61].
By integrating physical laws directly into the network, PINNs can
rapidly predict structural performance based on sensor inputs and
defect characteristics, bypassing the computational challenges of
conventional methods.

• Standardizing Framework Implementation
Future efforts will focus on developing standardized guidelines for
implementing real-time structural validation across different AM
platforms. This includes predefined validation criteria, calibration
protocols, and an intuitive user interface to monitor defects, stress
analysis, and validation outcomes. These tools will empower op-
erators to make informed decisions on quality without disrupting
production workflows.
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Appendix A. Tensile test results

The tensile test results for all 20 samples are listed in Table 6.
This table provides the maximum strain, stress, displacement, and force
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Table 6
Tensile test results for good and impactful defect samples.

Sample type Sample Max strain (με) Max stress (MPa) Displacement (mm) Force (N)

Good quality 1 19 579.98 49.35 2.74 2072.70
2 19 563.42 49.35 2.74 2072.70
3 19 637.26 49.61 2.75 2084.62
4 19 691.51 49.99 2.76 2099.84
5 19 637.57 49.66 2.75 2085.72
6 19 666.37 49.97 2.75 2098.74
7 19 618.10 49.44 2.75 2076.48
8 19 619.08 49.44 2.75 2076.48
9 19 585.64 49.70 2.74 2087.40
10 19 401.17 49.39 2.72 2074.38

Average (Good) 19 600.01 49.59 2.745 2082.91
Standard deviation (Good) 80.10 0.24 0.011 10.18

With impactful defect 1 15 335.05 39.90 2.15 1675.80
2 15 533.14 40.15 2.18 1686.30
3 15 569.09 39.83 2.18 1672.86
4 15 515.32 40.23 2.17 1689.66
5 15 510.64 40.67 2.17 1708.14
6 15 476.55 39.78 2.17 1670.76
7 15 641.32 39.78 2.19 1670.76
8 15 623.16 40.70 2.19 1709.40
9 15 463.30 40.29 2.16 1692.18
10 15 612.34 39.67 2.19 1666.14

Average (Impactful) 15 527.99 40.10 2.175 1684.20
Standard deviation (Impactful) 91.44 0.37 0.014 15.61
l

g
w
d
f

d
F

recorded for each sample in both the good-quality and impactful defect
groups. For good-quality samples, the average strain and stress values
align closely with theoretical expectations, supporting the validity of
the specimen preparation and testing process. In contrast, samples
with impactful defects show consistently lower strain and stress values,
ndicating the significant influence of defects on the material’s me-

chanical properties. These findings underscore the importance of defect
detection and the impact of structural flaws on tensile performance.

Appendix B. Constitutive model for material failure in PLA

In this study, we employ a constitutive model to capture the fracture
ehavior of PLA (Polylactic Acid) material in finite element analysis
FEA) [62–64]. The PLA specimens exhibit minimal plastic deforma-

tion and fail abruptly [65,66], as evidenced by tensile test results
n Fig. 3(b). The constitutive model is designed to simulate the on-

set of fracture once the material reaches its ultimate tensile strength
(UTS), with limited post-peak ductility. This model employs a damage
initiation criterion based on a critical strain threshold and follows a
displacement-based damage evolution law, as detailed below.

To achieve this in Abaqus, we adapted the ductile damage model
to simulate the characteristics of PLA failure. While typically applied
to ductile materials, this model was adjusted with low fracture strain
alues and immediate element deletion upon reaching critical strain to

capture the abrupt failure behavior observed in PLA.

B.1. Material properties

The specific material properties used in the simulation are as fol-
ows: the density of PLA is 1.36 g/mm3, with a Young’s modulus of
000MPa, Poisson’s ratio of 0.36, strain at UTS of 19 600 με, and UTS
f 49.59MPa.

B.2. Damage initiation

The onset of damage is defined by a critical strain threshold, calcu-
lated as follows:

𝜀f =
𝜎u
𝐸

(2)

where:
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• 𝜀f is the fracture strain, representing the threshold strain at which
damage begins.

• 𝜎u is the ultimate tensile strength, which is 49.59MPa for PLA.
• 𝐸 is Young’s modulus of the material, which is 3000MPa.

Substituting the values, we obtain the fracture strain:

𝜀f =
49.59MPa
3000MPa = 0.01653 (16 530 με)

This calculated fracture strain is close to the experimentally observed
strain at UTS, 19 600 με, confirming that the PLA material behaves
with limited ductility, consistent with quasi-brittle failure under tensile
oading [67].

B.3. Damage evolution

Following damage initiation, the material undergoes progressive
degradation until complete failure, modeled with a displacement-based
damage evolution law [68,69]. The damage variable 𝐷 is defined as:

𝐷 = 1 − 𝜎r
𝜎u

(3)

where:

• 𝜎r is the residual stress after damage evolution.
• 𝜎u is the ultimate tensile strength, 49.59MPa.

In this model, the damage variable 𝐷 increases as displacement pro-
resses beyond the initiation point, with 𝐷 approaching 1 rapidly,
hich indicates a near-instantaneous loss of stiffness. Using
isplacement-based evolution allows the model to capture the abrupt
ailure behavior as soon as critical displacement is reached.

B.4. Displacement at failure

The displacement at failure, 𝑢f, is estimated based on tensile test
ata, where the displacement at peak load was approximately observed.
or this analysis, 𝑢f is closely estimated to be 2.63 mm.

B.5. Element deletion for material failure

In Abaqus, element deletion is employed once the displacement at
failure 𝑢f is reached. This approach allows for the simulation of sudden
loss of material elements from the analysis, representing the abrupt
breakdown of PLA’s structural integrity under loading.
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B.6. Summary

This constitutive model, implemented in Abaqus/Explicit, provides
 computationally efficient approach for simulating the failure behavior
f PLA under tensile loading, demonstrating its validity. By employing
 displacement-based damage evolution law, the model captures the
brupt failure characteristics of PLA and offers a viable framework
or addressing limited ductility cases typical of brittle or quasi-brittle
aterials. This approach establishes a foundation for the development

f more comprehensive and realistic models in the future.

Data availability

Data and example code for this work are provided through a public
epository.
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